Recall Error Analysis for Coreference Resolution

Sebastian Martschat and Michael Strube Heidelberg Institute for Theoretical Studies gGmbH

Aim and Motivation

Coreference resolution is a complex, difficult task. How can we **assess** errors made by a coreference resolution system? How can we analyze errors to **identify challenges** in coreference resolution?

Experimental Settings

- **CoNLL-2012 English development data**: 343 documents among seven genres
- ► focus on an analysis of recall errors involving only names and **nouns**: one of the main performance bottlenecks
- analyze systems following different paradigms, reflecting major coreference approaches

Toolkit available at

http://smartschat.de/software

Method

represent entities as graphs

► recall errors: mismatches in **spanning trees** of reference entities compared to system output (switch roles for precision errors)

Construct graph for reference entity

build a complete graph respecting mention ordering

Construct graph for system output

► same principle as for reference entities

retain edges in reference entity that are also in system output

Construct spanning tree

- ► first compute arbitrary spanning trees for connected components
- ► to connect: choose edges motivated by Ariel's accessibility theory
- edges of tree not in partition are errors

Analysis

coreference resolution.

Conclusions

graph-based method for error extraction

incorporate linguistic information during spanning tree computation ► analysis of nominal/name errors: core set of challenging errors highlighted and quantified usefulness of world knowledge