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Coreference Resolution

Coreference resolution is the task of determining which mentions in a text
refer to the same entity.
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An Example

Vicente del Bosque admits it
will be difficult for him to select
David de Gea in Spain’s squad
if the goalkeeper remains on
the sidelines at Manchester
United.

de Gea’s long-anticipated
transfer to Real Madrid fell
through on Monday due to
miscommunication between the
Spanish club and United and
he will stay at Old Trafford until
at least January.
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Mention Pairs

Vicente del Bosque admits it
will be difficult for him to select
David de Gea in Spain’s squad
if the goalkeeper remains on
the sidelines at Manchester
United.

de Gea’s long-anticipated
transfer to Real Madrid fell
through on Monday due to
miscommunication between the
Spanish club and United and
he will stay at Old Trafford until
at least January.
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Mention Ranking

Vicente del Bosque admits it
will be difficult for him to select
David de Gea in Spain’s squad
if the goalkeeper remains on
the sidelines at Manchester
United.

de Gea’s long-anticipated
transfer to Real Madrid fell
through on Monday due to
miscommunication between the
Spanish club and United and
he will stay at Old Trafford until
at least January.
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Antecedent Trees

Vicente del Bosque admits it
will be difficult for him to select
David de Gea in Spain’s squad
if the goalkeeper remains on
the sidelines at Manchester
United.

de Gea’s long-anticipated
transfer to Real Madrid fell
through on Monday due to
miscommunication between the
Spanish club and United and
he will stay at Old Trafford until
at least January.
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Unifying Approaches

• approaches operate on structures not annotated in training data

• we can view these structures as latent structures

→ devise unified representation of approaches in terms of these
structures
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Final Goal
Learn a mapping

f : X →H×Z
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Final Goal
Learn a mapping

f : X →H×Z

• x ∈ X : structured input

• documents containing mentions and linguistic information
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Final Goal
Learn a mapping

f : X →H×Z

• h ∈H: document-level latent structure we actually predict

• mention pairs, antecedent trees, ...

• employ graph-based latent structures
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Final Goal
Learn a mapping

f : X →H×Z

Latent structures: subclass of directed labeled graphs G = (V ,A,L)

m0 m1 m2 m3

Nodes V : mentions plus dummy mention m0 for anaphoricity detection
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Final Goal
Learn a mapping

f : X →H×Z

Latent structures: subclass of directed labeled graphs G = (V ,A,L)

m0 m1 m2 m3

+

+
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Arcs A: subset of all backward arcs
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Final Goal
Learn a mapping

f : X →H×Z

Latent structures: subclass of directed labeled graphs G = (V ,A,L)
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Final Goal
Learn a mapping

f : X →H×Z

Latent structures: subclass of directed labeled graphs G = (V ,A,L)

m0 m1 m2 m3

+

+

+

Graph can be split into substructures which are handled individually
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Final Goal
Learn a mapping

f : X →H×Z

• z ∈ Z : mapping of mentions to entity identifiers

• inferred via latent h ∈H

12 / 25



Linear Models
Employ an edge-factored linear model:
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Learning: Perceptron
Input: Training set D, cost function c, number of epochs n

function PERCEPTRON(D, c, n)
Set θ = (0, . . . ,0)
for epoch= 1, . . . ,n do

for (x ,z) ∈ D do
ĥopt = argmax

h∈Hx ,z

〈θ ,φ(x ,h,z)〉

(ĥ, ẑ) = argmax
(h,z)∈Hx×Zx

〈θ ,φ(x ,h,z)〉+ c(x ,h, ĥopt,z)

if ĥ does not encode z then
Set θ = θ +φ(x , ĥopt,z)−φ(x , ĥ, ẑ)

Output: Weight vector θ
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if ĥ does not encode z then
Set θ = θ +φ(x , ĥopt,z)−φ(x , ĥ, ẑ)
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Output: Weight vector θ

m5

m0 m1 m2 m3 m4

14 / 25



Learning: Perceptron
Input: Training set D, cost function c, number of epochs n

function PERCEPTRON(D, c, n)
Set θ = (0, . . . ,0)
for epoch= 1, . . . ,n do

for (x ,z) ∈ D do
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Reward solutions with high cost: large-margin approach
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if ĥ does not encode z then
Set θ = θ +φ(x , ĥopt,z)−φ(x , ĥ, ẑ)
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if ĥ does not encode z then
Set θ = θ +φ(x , ĥopt,z)−φ(x , ĥ, ẑ)
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Mention Ranking

m0 m1 m2 m3 m4
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Denis and Baldridge (2008), Chang et al. (2013), ...
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Mention Ranking

m0 m1 m2 m3 m4
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Cost function (Durrett and Klein, 2013; Fernandes et al., 2014)
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Data

• conduct analysis and experiments on the English data from the
CoNLL-2012 shared task on multilingual coreference resolution

• evaluate via CoNLL scorer (average of three widely used evaluation
metrics)
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Results on Test Data
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• state-of-the-art system based on antecedent trees with non-local
features (Björkelund and Kuhn, 2014)
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Results on Test Data
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• higher precision, but lower recall
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Results on Test Data

HOTCoref nn_coref Pair Rank1 Rank2 Tree
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• mention ranking, feature combinations learned via neural networks
(Wiseman et al., 2015)
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Analysis Tools

Employ our coreference resolution error analysis framework (Martschat
and Strube, EMNLP 2014)

• extract precision and recall errors on development data

• compare errors made to assess strengths and weaknesses of
approaches
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Analysis

• ranking vs mention pair
• mainly better anaphoricity determination
• antecedent competition useful for pronouns

• latent ranking vs ranking with closest antecedents
• mainly less precision errors for hard cases

• antecedent trees vs ranking
• document-level modeling: more cautious updates→ higher

precision at expense of recall
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Conclusions

• coreference resolution approaches can be represented by latent
structures they operate on

• devised a framework and implemented mention pair, mention
ranking, antecedent trees

• mention ranking performs best, mainly due to anaphoricity modeling
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Future Work

• apply framework to entity-centric approaches

• analyze more approaches

• devise new models in the framework
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Thanks!

Python implementation, state-of-the-art models,
tutorials available at:

http://github.com/smartschat/cort

This work has been funded by the Klaus Tschira Foundation.

Thank you for your attention!
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Entity-centric Approaches
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All Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg

CoNLL-2012 English development data

Pair 66.68 71.71 69.10 53.57 62.44 57.67 52.56 53.87 53.21 59.99

Rank1 67.85 76.66 71.99∗ 55.33 65.45 59.97∗ 53.16 61.28 56.93∗ 62.96

Rank2 68.02 76.73 72.11�× 55.61 66.91 60.74†� 54.48 61.36 57.72†�× 63.52

Tree 65.91 77.92 71.41 52.72 67.98 59.39 52.13 60.82 56.14 62.31

CoNLL-2012 English test data

Pair 67.16 71.48 69.25 51.97 60.55 55.93 51.02 51.89 51.45 58.88

Rank1 67.96 76.61 72.03∗ 54.07 64.98 59.03∗ 51.45 59.02 54.97∗ 62.01

Rank2 68.13 76.72 72.17� 54.22 66.12 59.58†� 52.33 59.47 55.67†� 62.47

Tree 65.79 78.04 71.39 50.92 67.76 58.15 50.55 58.34 54.17 61.24
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Analysis: Recall Errors

Name/noun Anaphor pronoun

Model Both
name

Mixed Both
noun

I/you/we he/she it/they Rem.

Max 3579 948 2063 2967 1990 2471 591

Pair 815 657 1074 394 373 1005 549

Rank1 879 637 1221 348 247 806 557

Rank2 857 647 1158 370 251 822 566

Tree 911 686 1258 441 247 863 572
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Analysis: Precision Errors

Name/noun Anaphor pronoun

Model Both
name

Mixed Both
noun

I/you/we he/she it/they Rem.

Pair 885 83 1055 836 289 864 175

2673 79 1098 2479 1546 1408 115

Rank1 587 93 494 873 324 844 121

2620 96 960 2521 1692 1510 97

Rank2 640 92 567 862 318 835 42

2664 102 1038 2461 1692 1594 43

Tree 595 57 442 836 318 757 37

2628 82 924 2398 1691 1557 36
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