Heidelberg Institute for Theoretical Studies

Latent Structures for **Coreference Resolution**

Sebastian Martschat and Michael Strube

Heidelberg Institute for Theoretical Studies gGmbH

Coreference Resolution

Coreference resolution is the task of determining which mentions in a text refer to the same entity.

An Example

Vicente del Bosque admits it will be difficult for him to select David de Gea in Spain's squad if the goalkeeper remains on the sidelines at Manchester United.

An Example

Vicente del Bosque admits it will be difficult for him to select David de Gea in Spain's squad if the goalkeeper remains on the sidelines at Manchester United.

Motivation

Structures for Coreference Resolution

Experiments and Analysis

Conclusions and Future Work

Motivation

Structures for Coreference Resolution

Experiments and Analysis

Conclusions and Future Work

General Paradigm

Consolidate pairwise decisions for anaphor-antecedent pairs

Vicente del Bosque admits it will be difficult for him to select David de Gea in Spain's squad if the goalkeeper remains on the sidelines at Manchester United.

General Paradigm

Consolidate pairwise decisions for anaphor-antecedent pairs

Vicente del Bosque admits it will be difficult for him to seluct David de Gea in Spain's squad if the goalkeeper where so on the sidelines at Manchester United.

Mention Pairs

Vicente del Bosque admits it will be difficult for him to select David de Gea in Spain's squad if the goalkeeper where so on the sidelines at Manchester United.

Mention Ranking

Vicente del Bosque admits it will be difficult for him to seluct David de Gea in Spain's squad if the goalkeeper will so on the sidelines at Manchester United.

Antecedent Trees

Vicente del Bosque admits it will be difficult for him to select David de Gea in Spain's squad if the goalkeeper selects on the sidelines at Manchester United.

Unifying Approaches

- · approaches operate on structures not annotated in training data
- we can view these structures as latent structures

Unifying Approaches

- · approaches operate on structures not annotated in training data
- · we can view these structures as latent structures

 $\rightarrow\,$ devise unified representation of approaches in terms of these structures

Motivation

Structures for Coreference Resolution

Experiments and Analysis

Conclusions and Future Work

$f: \mathcal{X} \to \mathcal{H} \times \mathcal{Z}$

- $x \in \mathcal{X}$: structured input
- · documents containing mentions and linguistic information

$f\colon \mathcal{X} \to \mathcal{H} \times \mathcal{Z}$

- $h \in \mathcal{H}$: document-level latent structure we actually predict
- mention pairs, antecedent trees, ...
- employ graph-based latent structures

 $f\colon \mathcal{X} \to \mathcal{H} \times \mathcal{Z}$

Latent structures: subclass of directed labeled graphs G = (V, A, L)

 $f\colon \mathcal{X} \to \mathcal{H} \times \mathcal{Z}$

Latent structures: subclass of directed labeled graphs G = (V, A, L)

Nodes V: mentions plus dummy mention m_0 for anaphoricity detection

 $f\colon \mathcal{X} \to \mathcal{H} \times \mathcal{Z}$

Latent structures: subclass of directed labeled graphs G = (V, A, L)

Arcs A: subset of all backward arcs

 $f\colon \mathcal{X} \to \mathcal{H} \times \mathcal{Z}$

Latent structures: subclass of directed labeled graphs G = (V, A, L)

Labels L: labels for arcs

 $f\colon \mathcal{X} \to \mathcal{H} \times \mathcal{Z}$

Latent structures: subclass of directed labeled graphs G = (V, A, L)

Graph can be split into substructures which are handled individually

$f: \ \mathcal{X} \to \mathcal{H} \times \boldsymbol{\mathcal{Z}}$

- $z \in \mathcal{Z}$: mapping of mentions to entity identifiers
- inferred via latent $h \in \mathcal{H}$

$$f(x) = \arg \max_{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x} \sum_{a \in h} \langle \theta, \phi(x,a,z) \rangle$$

$$f(x) = \operatorname{arg\,max}_{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x} \sum_{a \in h} \langle \theta, \phi(x,a,z) \rangle$$

Employ an edge-factored linear model:

$$f(x) = \operatorname{arg\,max}_{(h,z)\in\mathcal{H}_x\times\mathcal{Z}_x}\sum_{a\in h} \langle \theta, \phi(x,a,z) \rangle$$

(m₂)

Employ an edge-factored linear model:

$$f(x) = \operatorname{arg\,max}_{(h,z)\in\mathcal{H}_x\times\mathcal{Z}_x}\sum_{a\in h} \langle \frac{\theta}{\theta}, \phi(x,a,z) \rangle$$

m₃

 m_1

(m₂)

$$f(x) = \arg \max_{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x} \sum_{a \in h} \langle \theta, \phi(x, a, z) \rangle$$

$$f(x) = \arg\max_{(h,z)\in\mathcal{H}_x\times\mathcal{Z}_x}\sum_{a\in h}\langle\theta,\phi(x,a,z)\rangle$$

Input: Training set \mathcal{D} , cost function c, number of epochs n

for epoch = 1,...,*n* do for $(x, z) \in \mathcal{D}$ do if \hat{h} does not encode z then

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,..., *n* do for $(x, z) \in D$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg\,max}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg\,max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set D, cost function c, number of epochs n **function** PERCEPTRON(D, c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,..., *n* do for $(x, z) \in D$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg\,max}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg\,max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,...,*n* do for $(x, z) \in D$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,...,*n* do for $(x, z) \in \mathcal{D}$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,..., *n* do for $(x, z) \in \mathcal{D}$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,..., *n* do for $(x, z) \in D$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg\,max}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg\,max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,..., *n* do for $(x, z) \in D$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,..., *n* do for $(x, z) \in \mathcal{D}$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set D, cost function c, number of epochs n **function** PERCEPTRON(D, c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,..., *n* do for $(x, z) \in D$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set $\theta = (0, ..., 0)$ for epoch = 1,..., *n* do for $(x, z) \in D$ do $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle$ $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$ if \hat{h} does not encode *z* then Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set
$$\theta = (0, ..., 0)$$

for epoch = 1,..., *n* do
for $(x, z) \in \mathcal{D}$ do
 $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle$
 $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$
if \hat{h} does not encode *z* then
Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set
$$\theta = (0, ..., 0)$$

for epoch = 1,..., *n* do
for $(x, z) \in D$ do
 $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle$
 $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$
if \hat{h} does not encode *z* then
Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$
utput: Weight vector θ

Reward solutions with high cost: large-margin approach

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set
$$\theta = (0, ..., 0)$$

for epoch = 1,..., *n* do
for $(x, z) \in D$ do
 $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{arg\,max}} \langle \theta, \phi(x, h, z) \rangle$
 $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{arg\,max}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$
if \hat{h} does not encode *z* then
Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set
$$\theta = (0, ..., 0)$$

for epoch = 1,..., *n* do
for $(x, z) \in D$ do
 $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle$
 $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$
if \hat{h} does not encode *z* then
Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Input: Training set \mathcal{D} , cost function c, number of epochs n **function** PERCEPTRON(\mathcal{D} , c, n)

Set
$$\theta = (0, ..., 0)$$

for epoch = 1,..., *n* do
for $(x, z) \in D$ do
 $\hat{h}_{opt} = \underset{h \in \mathcal{H}_{x,z}}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle$
 $(\hat{h}, \hat{z}) = \underset{(h,z) \in \mathcal{H}_x \times \mathcal{Z}_x}{\operatorname{argmax}} \langle \theta, \phi(x, h, z) \rangle + c(x, h, \hat{h}_{opt}, z)$
if \hat{h} does not encode *z* then
Set $\theta = \theta + \phi(x, \hat{h}_{opt}, z) - \phi(x, \hat{h}, \hat{z})$

Soon et al. (2001), Ng and Cardie (2002), Bengtson and Roth (2008), ...

Latent structure

Substructure

No costs (use training data resampling)

No costs (use training data resampling)

Denis and Baldridge (2008), Chang et al. (2013), ...

Substructure

Cost function (Durrett and Klein, 2013; Fernandes et al., 2014)

Motivation

Structures for Coreference Resolution

Experiments and Analysis

Conclusions and Future Work

Data

- conduct analysis and experiments on the English data from the CoNLL-2012 shared task on multilingual coreference resolution
- evaluate via CoNLL scorer (average of three widely used evaluation metrics)

19/25

19/25

Results on Test Data

 state-of-the-art system based on antecedent trees with non-local features (Björkelund and Kuhn, 2014)

- · mention pair model with standard strategy for training data balancing
- · rich lexical feature set

- · ranking with closest antecedent as gold antecedent
- · mainly gains in precision

- · ranking with latent antecedent as gold antecedent
- · slight gains in precision and recall

- · antecedent trees
- · higher precision, but lower recall

 mention ranking, feature combinations learned via neural networks (Wiseman et al., 2015)

Analysis Tools

Employ our coreference resolution error analysis framework (Martschat and Strube, EMNLP 2014)

- · extract precision and recall errors on development data
- compare errors made to assess strengths and weaknesses of approaches

Analysis

- · ranking vs mention pair
 - · mainly better anaphoricity determination
 - · antecedent competition useful for pronouns
- · latent ranking vs ranking with closest antecedents
 - · mainly less precision errors for hard cases
- · antecedent trees vs ranking
 - document-level modeling: more cautious updates \rightarrow higher precision at expense of recall

Motivation

Structures for Coreference Resolution

Experiments and Analysis

Conclusions and Future Work

Conclusions

- coreference resolution approaches can be represented by latent structures they operate on
- devised a framework and implemented mention pair, mention ranking, antecedent trees
- · mention ranking performs best, mainly due to anaphoricity modeling

Future Work

- · apply framework to entity-centric approaches
- · analyze more approaches
- · devise new models in the framework

Thanks!

Python implementation, state-of-the-art models, tutorials available at:

http://github.com/smartschat/cort

This work has been funded by the Klaus Tschira Foundation.

Thanks!

Python implementation, state-of-the-art models, tutorials available at:

http://github.com/smartschat/cort

This work has been funded by the Klaus Tschira Foundation.

Thank you for your attention!

Entity-centric Approaches

All Results

	MUC			B ³			CEAF _e			
Model	R	Р	F ₁	R	Р	F ₁	R	Р	F ₁	Avg
			CoNI	_L-2012 E	nglish d	evelopmen	t data			
Pair	66.68	71.71	69.10	53.57	62.44	57.67	52.56	53.87	53.21	59.99
Rank ₁	67.85	76.66	71.99*	55.33	65.45	59.97*	53.16	61.28	56.93*	62.96
$Rank_2$	68.02	76.73	72.11 ^{◊×}	55.61	66.91	60.74 [†] ◇	54.48	61.36	57.72 [†] ◇×	63.52
Tree	65.91	77.92	71.41	52.72	67.98	59.39	52.13	60.82	56.14	62.31
				CoNLL-20)12 Engli	sh test dat	a			
Pair	67.16	71.48	69.25	51.97	60.55	55.93	51.02	51.89	51.45	58.88
Rank ₁	67.96	76.61	72.03*	54.07	64.98	59.03*	51.45	59.02	54.97*	62.01
$Rank_2$	68.13	76.72	72.17 °	54.22	66.12	59.58 [†] °	52.33	59.47	55.67 [†] °	62.47
Tree	65.79	78.04	71.39	50.92	67.76	58.15	50.55	58.34	54.17	61.24

Analysis: Recall Errors

		Name/noun		Α			
Model	Both name	Mixed	Both noun	l/you/we	he/she	it/they	Rem.
Max	3579	948	2063	2967	1990	2471	591
Pair	815	657	1074	394	373	1005	549
$Rank_1$	879	637	1221	348	247	806	557
$Rank_2$	857	647	1158	370	251	822	566
Tree	911	686	1258	441	247	863	572

Analysis: Precision Errors

	I	Name/noun		Ana			
Model	Both name	Mixed	Both noun	l/you/we	he/she	it/they	Rem.
Pair	885	83	1055	836	289	864	175
	2673	79	1098	2479	1546	1408	115
Rank ₁	587	93	494	873	324	844	121
	2620	96	960	2521	1692	1510	97
Rank ₂	640	92	567	862	318	835	42
	2664	102	1038	2461	1692	1594	43
Tree	595	57	442	836	318	757	37
	2628	82	924	2398	1691	1557	36